
Towards Application Security
Design | Process | Organization

–Software Development Process

–Security Design Process &
Artifacts

–Security Team composition

–Future directions

Software Development
Process Evolution

– Over the waterfall

Requirements

Dev

Deploy

Software Development
Process Evolution

– Iterative development

• Design/prototype hard problems
first

Analysis DeployDesign Build/Test

Common Process Roles

– Development Processes vary in role
definition, but usually include these:

• Stakeholders

• Architect

• Business Analyst/SME

• Developer

• QA

Security Team Composition

• Security-specific Team Roles
– Security Architect: responsible for overall

design

– Security Analyst: responsible for
requirements and Misuse Cases

– Unit Hacker: Unit Hack, suites, and
remediation guidelines

– Application Security Configurator

What are we developing?

– What is an enterprise application?
– Anatomy of an enterprise application

• Characterized by unique problem and
solution sets

• Hybrid of custom code and COTS

• Sharing of data, infrastructure, and services

• Client and server support issues

• Connectivity creates layered and conflicting
trust models

Security Design Process/Roles

–Security specific analysis & design
activities

–Holistic cross-domain focus

–Security-centric artifacts which
integrate with development
process

–Understand when to harvest/adapt
& when to roll your own

Analysis Phase

"A problem, properly stated, is a problem on its way to
being solved," Buckminster Fuller

Analysis
• Use Case

•Reqt

DeployDesign Build/Test

Use Case

• A specific way to capture requirements
using actors and actions to show
structure and relationships

• Defines both text document and diagram
formats

• In Unified Process, Use Cases drive the
development process

• Use Case Tools

Use Case

• How do Use Cases benefit security analysis
and design?
– Breaking down the problem space
– Contextual relationships

– System Boundaries

– Pre & Post conditions
– Actors/Roles

– Administrator Use Cases

Example

• Data classes
– Public

– Private

– Confidential

– Site Config

• Use Cases
– Browse Bookstore

– Login

– Edit User

– Purchase Books

– Admin Site

Bringing it all together
Use Use Cases requirements, Roles, and

Data classification to build access matrix

R, U, DAdmin Site

RC, R, URPurchase
Books

U, DEdit User

RRRLogin

RBrowse

Site ConfigConfdlPrivatePublic

Mis-Use Cases

• Look at the system from an attacker point
of view

• Useful to glean security requirements,
create threat models & Unit Hacks

• Discussed in paper by Guttorm Sindre
and Andreas Opdahl.
– More information at:

www.ifi.uib.no/conf/refsq2001/papers/p25.pdf

Mis-Use Cases Elements

• “A misuse case is the inverse of a use case, i.e. A function that
the system should not allow” -Sindre & Opdahl

• “A mis-actor is the inverse of an actor, i.e., an actor that one does
not want the system to support, an actor who initiates misuse
cases.” -Sindre & Opdahl

• Additional elements
– Worst Case Threat: end system state if Misuse succeeds
– Prevention and Detection Guarantees: these guarantees

closely resemble a Use Case Post-condition, but
encapsulate security-specific concepts of prevention and
detection.

– Stakeholders and Risks: this field gives the security team a
place to address what the business risk that is generated by
the application.

Data Model & Classification

• Classifying data assists in security
design

• Classification considerations
– Value: business value of data based on risk

assessment

– Confidentiality

– Regulatory/industry/legal considerations

– Roles

Security Glossary

• Demystify key security terms for
development team

• Roll your own or use an industry or
vendor standard:
– SANS

http://www.sans.org/resources/glossary.php

– MS http://www.microsoft.com/security/glossary

Security Definitions
• SANS

– Authentication:Authentication is the process of confirming the
correctness of the claimed identity.

– Authorization:Authorization is the approval, permission, or
empowerment for someone or something to do something.

• MS
– authentication (n.)The process for verifying that someone or something

is who or what it claims to be. In private and public computer networks
(including the Internet), authentication is commonly performed through
the use of logon password

– authorization (n.) reference to computing, especially remote computers
on a network, the right granted an individual or process to use a system
and the data stored on it. Authorization is typically set up by a system
administrator and verified by the computer based on some form of user
identification, such as a code number or password.

Design Phase

 Drilling down into design

Design
•UML
•CRC

DeployAnalysis Build/Test

Design Phase Participation
 Drilling down into design

Tradeoff analysis
– Architectural Options

• Language/frameworks choice

• Design Patterns & Pattern Languages

• Buy/build blend

– Business Value
• Functionality v. Security

– Usability
• Fundamental conflicts (see upcoming ISB)

• Ignorance/Arrogance paradigm

Building Architecture

 4 + 1 Architectural layers

Logical Data

Process Deployment

Use Case

Building Security Architecture
 Architectural layers for holistic security

view

Logical
• Defend/Detect/Respond Layers

•Threat Models
•Security Services

Data
•Classification

•Operation/Analytics
•Management

Process
• NFR

•Process Boundaries

Deployment
•Deployment roles

•HW/SW/Physical config

Use/Misuse
Case

Threat Modeling

• Elaborates on threats in MisUse case
analysis

• Focus on distilling:
– Threat impact level

– Threat likelihood

– Mitigation, management, and containment

Threat Models

• Howard and Leblanc’s STRIDE and DREAD
• Identification

– STRIDE
• Spoofing, Tampering, Repudiation, Information disclosure,

Denial of service, and Elevation of privilege

• Prioritization
– DREAD

• Damage potential, Reproducibility, Exploitability, Affected
users, and Discoverability

Construction Phase

• Concerned with building, integrating, and
testing code

• Iteration

• Use Unit Test tools like Nunit
(www.nunit.org) to validate your design
assumptions

Build and Unit Test Process

• Separation of privileges
– Developer Level

• Compile

• Unit test

– Integration Level
• Build

• Configure

• Deploy

• Promote

Unit Hacking

• Unit Hacking Fundamentals
– Relies on assertion condition (boolean)

• Assertion.AssertEquals(foobar, baz);
• Assertion.AssertNotNull(foo);

– Use same tools as Unit Testing (nunit)
• http://sourceforge.net/projects/nunitaddin/

– Unit Hacking Mindset
– Combine domain specific threats with industry best

practices
– Create same benefits for security team as Unit

Tests do for BA and Developers

Unit Hacking

• Where do Unit Hacks fit?

Req’t
Analysis

Use Cases

UML

App
Code

MisUse
Cases

Unit Hack

Builds Tests

Unit Hacking in Practice

• Issues with Unit Hacking
• Unit Hack Suites

– Aim for reuse

– Identify Hack suites for common patterns
such as web apps

– Provide remediation guidelines where
possible

– Identify attack signatures

Transition Phase

• Where “security” traditionally begins

• Operational planning

• Monitoring processes

• Incident response planning

• Locking down deployment/config process

Future Directions

• Continuing evolution of development
processes and tools

• Outsource implications
• Aspect Oriented Programming tools for

security programming
• More proactive security team

involvement in development activities
• Use Cases : http://alistair.cockburn.us

Questions?

• More information and free, monthly
architecture newsletter at:
www.arctecgroup.net/views.htm

